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1. INTRODUCTION

Let Xi = i/n, i = 0, 1,... , n, be a uniform subdivision of [0, 1] and k a
positive integer. Then for eachfE qo, 1] satisfyingj(O) = j(l) there exists
a unique periodic spline 2'nkf of degree k interpolating to f at the points
{xi}f=o, having knots at these points or halfway between if k is, respectively,
odd or even. We will be interested in describing the behavior of

II 2'nk II = sup II2'nkfll,
IIfll~1

under the Chebyshev (sup) norm. This problem has been investigated by
Schurer and Cheney [II] for cubics (k = 3) and by Schurer [10] for the
quintic case (k = 5); in particular, formulas for II 2'nk II and SUPn II2'nk II are
given. The same will be done here, in Section 4, for arbitrary degree k ?: 2.
Of key importance is a very pleasant property of arbitrary periodic splines
which will be described in Section 2.

A cardinal spline function of degree k is a spline having knots at the
integers (half-integers) if k is odd (even). The bounded cardinal spline
operator will be investigated in Section 5, where its intimate relation with the
periodic spline operator will be noted.

I wish to express my appreciation to Professor I. J. Schoenberg for
numerous helpful discussions and comments relating to the material presented
here.

2. THE CYCLIC VARIATION DIMINISHING PROPERTY OF PERIODIC SPLINES

Let Xl , X2 ,... , Xr be a finite sequence of reals. Define v(xi)f=l to be the
number of variations of sign in the terms of the sequence, where terms Xj = 0
are not counted, and vc(xi)f=l , the number ofcyclic variations of the sequence,
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in the following manner. If Xj =1= 0, let
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If all X; = 0, we let vcCx;) = vex;) = 0. Note that vc(x;) is an even number,
in fact

if vex;) is even,
if V(Xi) is odd.

(2.1)

For a function! defined on I = [0, 1], define

v(f) = v(f)[ = sup v(!(t;))~=l

vcC]) = vcC])[ = sup VcC!(tim~l

where the supremum is taken over all arbitrary finite sets tl , t2 , ••• , tr of
increasing elements of I.

It has been shown [3] that spline functions possess the following variation
diminishing property: Suppose Sex) is a spline of degree k with knots

and representation

°= Xo < Xl < ... < Xn = 1

n-k-l
Sex) = I CiMi(x), X E I,

i=O

(2.2)

where M;(x) is the i-th B-spline of degree k for the subdivision (2.2). Then

(2.3)

In considering a periodic spline on [0, 1], we first extend its knots in such
a manner that all new knots are obtained from the old by translations of all
integral sizes, i.e.,

XiHn = Xi + I i = 1,2,... , n; 1= 0, ±I, ±2,.... (2.4)

Now define the periodic B-splines

<Xl

M;(x) = I Mi+ln(x)
I=-<Xl

i = 1,2,... , n

Schoenberg [7] has shown that these functions form a basis for the space f!J1Tk

of I-periodic splines of degree k with knots (2.2).
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Hence
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n

SeX) = L CiMi(X)
i~l

x EI. (2.5)

Although (2.5) does not satisfy (2.3), we do have the following theorem

THEOREM 1. Periodic splines are cyclic variation diminishing, i.e., if S(x)
is periodic of degree k with representation (2.5), then

(2.6)

Proof When considered as a function defined on R = (-00, (0), Sex)
clearly has knots (2.4). Let p qe a positive integer to be chosen later.
Restricting attention to the interval [0, p], one may write

where

:pn-l
Sex) = L CiMi(X),

i=-k

X E [O,p]

Ci+n = Ci, i = -k, -k + I, ... , (p - I)n - I (2.7)

and Cl , C2 ,..., Cn are the same as those in (2.5). From (2.3), we have

Also, (2.7) implies

( ) :pn-l:o:::: ()n-l
v Ci i=O "" pVc Ci i~O

(2.8)

(2.9)

If vc(S)[O.l] = VC(S(Xl)' S(X2)"'" S(xq)), then by the periodicity of Sand (2.1)

pVc(S)[O.l] = VC(S(x1), ... , S(xq), S(x1 + 1)'00" S(xq + I), S(XI + 2),

..., S(x1 + (p - 1),... , S(xq + (p - I))

::( v(S)[o.:p] + 1,

and hence by (2.8), (2.9), and (2.10)

(2.10)

(2.11)

Choosingp ~ k + 2 and since vk) is an integer valued function, the theorem
is proved.
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Denote by Z(S) the number of zeros of Son [0, 1] not counted according
to multiplicities. A zero at the endpoints is counted just once, as is an interval
where Sex) = 0. Noting that vc(S) is equal to the number of zeros through
which S changes sign, and then using a simple variational argument, one may
establish the following corollary.

COROLLARY 1. Let S be a periodic spline on [0, 1] with knots (2.2). Then

for n even,
for n odd.

(2.12)

Examples may be furnished to show the bounds are best possible. Also
observe that the bounds are independent of the degree.

As a final remark, because of the paper of Jones and Karlovitz [2], we
have the following curious fact.

COROLLARY 2. Let n be odd in (2.2). Then any fE qo, 1] has a best
approximation s E f!IJ"k where the error function e = f - s equioscillates, i.e.,
there exist n + 1points °~ gl <g2 < ... < gn+l < 1 such that

and

On the other hand, this statement is false if n is even.

3. THE PERIODIC SPLINE OPERATOR

We now turn to the problem of computing the norm of the periodic spline
operator on a uniform subdivision of [0, 1]. With no loss of generality, we
may rescale so that .Pnkj has period n and interpolates to f at the integers.
Let us also assume n > 1, as quite clearly II .9';.k II = 1.

Define LnCx) = Lnk(x) to be the cardinal spline of period n and degree k
satisfying

Then clearly

v = 0 mod n

v *°mod n
v = 0, ±1, ±2,.... (3.1)

n

'pnkf(x) = I f(v) Ln(x - v)
v=l

-00 <x < 00. (3.2)
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Since
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n

I 2 nkf(x) I :::;; Ilf[loo L ILn(x - v)1
v=l

and L:=1 \ Ln(x - v)1 has period 1, it follows that

n

112nk II = max I I Ln(x - v)l.
XE[O,I] v=1

Hence if a sequence yvn can be found such that for all x E [0,1]

(3.3)

v = 1,2,... , n (3.4)

then
n

Sn(x) = I yvnLn(X - v)
v=1

will represent an extremal spline, i.e.,

112nk II = max Sn(x).
XE[O,I]

LEMMA 1. Let yvn be defined as follows:

(3.5)

-2n _ \-(-1)",
Yv - /{-l)v,

v = 1, 2, ... , n for n odd;

v = 1,2,... , n,
v = n + 1,... , 2n.

(3.6)

Then:this definition satisfies the condition (3.4).

b ~.=> L
O~n '0::7 n. 2

n = 2m, m odd

n odd

,~
~ ,n
2

Ln (xl

FIGURE 1
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The lemma will be established by demonstrating that the splines Ln(x) appear
as in Fig. 1. Hence it will be sufficient to prove the following statements hold
on [0, n).

(a) Ln(x) has zeros only at x = 1, 2,... , n - I;

(b) Ln'(v) =1= 0, v = 1,2, , n - 1 for n odd;

(c) Ln'(v) =1= 0, v = 1,2, , n - I, v =1= n12, n even.

Corollary 1 is used repeatedly throughout the proof.

Proof (a) If n is odd, the statement is immediate. Suppose n even.
Then by the unicity of cardinal spline interpolation, Ln(x) is symmetric
about x = nl2 (since the data (3.1) possesses this property). Thus if Ln(x)
had an additional zero on (0, n), it would in fact have two, violating (2.12).

(b) Using Rolle's theorem and the periodicity of Ln(x), we find that
Ln'(x) has exactly n - 1 zeros on [0, n), none of which is an integer (except
possibly x = 0).

(c) By the same reasoning as in (b), Ln'(x) has n - 1 such zeros plus
possibly one more, and this must occur at x = nl2 by the symmetry condition.

LEMMA 2.

Proof We must show

max Six) = Sn(l/2)
XE[O,I]

(3.7)

(3.8)

Assume n odd. By (3.6) and the intermediate value theorem, Sn(x) has at
least n - 1 zeros on (1, n), and hence Sn'(x) has at least n - 2 zeros on this
interval. Thus Sn'(x) may have at most one zero on [0, 1], which we claim
occurs at x = 1/2. To see this, extend the data {yvn}:=l periodically, i.e., let

2n _\-(-I)V
Yv - (-I)v

v = 21n + I, 21n + 2, ... , 21n + n
v = (21 + I) n + I, (21 + 1) n + 2,... , (21 + I) n + n,

1=0, ±I, ±2,... ,

where

for n odd, (3.9)

Clearly,

n 11. - n
Yv+!n = Yv = Yv v = 1,2,... , n, 1= 0, ±I, ±2,....

v = 0, ±I, ±2,....



308 RICHARDS

Since the data (3.9) is symmetric about x = 1/2, so is S,.(x). Hence
S,.'(I/2) = 0, and it can be shown that this is indeed a maximum for S,.(x).
The proof for n even is similar.

S. (xl =52. (xl. n odd

S2n (xl, n even

FIGURE 2.

4. CONSTRUCTION OF Sn(X)

In this section, it will be assumed that our splines have odd degree, i.e.,
k = 2m - 1, and hence all knots are located at the integers. Proofs for the
even degree case are quite similar, and the corresponding results given
later.

Define ~m-l to be the set of cardinal splines of degree 2m - 1 vanishing
at all integers. Schoenberg [8] has shown that ~m-l is a linear space of
2m - 2 dimensions spanned by "eigensplines" Sl(X), S2(X),,,,, S2m-2(X),
Corresponding to this basis is a set of reals

\ < A2 < ... < Am_1 < -1 < Am < ... < A2m- 2 < 0, (4.1)

such that

S;(X + 1) = AiSi(X) i = 1, 2, ... , 2m - 2. (4.2)
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We will also need the Euler spline, E(x), which is the unique bounded cardinal
spline of degree 2m - I satisfying

E(v) = (-I)" v = 0, ±1, ±2,.... (4.3)

Consider the restriction of S2n(X) to the interval [-n + 1,0]. This function
may be uniquely extended to a cardinal spline S2n(X) interpolating to the
Euler data (4.3). Therefore S2n - E E ~m-2 and so there exist real numbers
C1 , C2 , ••• , C2m-2 such that

or

2m-2
S2n(X) = E(x) + L CiSi(X) ,

i~l

2m-2
S2n(X) = E(x) + L CiSi(X),

i~l

-00 < x < 00,

xE[-n+I,O]. (4.4)

If n is odd, the data (3.9) (and hence Sn(x)) is symmetric about x = 1/2
and x = (-n + 1)/2. Since Sn E C2m- 2(R) and x = 1/2 is not a knot, we
have the relations

Letting

S~)(l/2) = 0,

S(v) ( -n + 1 ) = 0
n 2 '

It,t+ = 0,

v = 1,3'00" 2m - 1,

v = 1,3'00" 2m - 3.

t ~ 0;
t < O.

(4.5)

we may represent Six) on [-n + 1,1] in the form

2m-2
Sn(x) = E(x) + i~ CiSi(X) + (2m ~ I)! x~m-\ X E [-n + 1,1], (4.6)

and the unknowns may be obtained by applying (4.5) to yield the nonsingular
system of equations

v = 1, 3'00" 2m - 1,

i~l

v = 1,3'00" 2m - 3.

(4.7)
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The last m - 1 equations follow from the quasiperiodicity property (4.2) and
the evenness of E(x) about all integers.

For n even, we first observe that S2n(X) is symmetric about x = 1/2 and
x = -n + 1/2, and since neither of these points are knots, it follows that

Also

S~~(I/2) = S~~(-n + 1/2) = 0, v = 1, 3,... , 2m - 1. (4.8)

2m-2
S ) " S ( ) a 2m-l2n(X) = E(x + i~ Ci i X + (2m _ I)! x+

Hence,

+ b ( 1 )2m-l
(2m _ I)! -n + - x + , X E [-n, 1]. (4.9)

(
1) 2m-2 (1) a (1)2m-l-v

E(v) 2 + tl CiS~v) 2 + (2m - 1 - v)! 2 = °
(4.10)

(
1 2m-2 (1) b (1)2m-l-v

E(v) 2) + 6 CiAins~v) 2 - (2m _ 1 - v)! 2 = 0,

v = 1,3,... , 2m - 1.

On solving (4.7) and (4.10) and making use ofLemma 2, we have established
the following theorem.

THEOREM 2. For n odd, n > I,

II ~~m-l II = II 2::-1 II

EG) SlG) S.m_.@
1 C).m-l

(2m - 1)! 2

E'G) 51' G) S~m_. @ 1 crm
-.

(2m - 2)! 2

E(·m-l) G) S~·m-l) @ S(·m-l) (!) . J-l.
n

.m-. 2

0 ,\~«n-l)/')51 '(0) ,\~~.-1)f,)S~m_.(O) 0

0 ,\~«n-l)/.)S~.m-3)(0) ,\;-~~;1) I.)S~:--;;3,(0) 0
(4.11)
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For even n,

II ~~~-111

E@ SIG)
E'@ SI'@

E(2m-l)@ s~2m-ll@

EG) -n 'C)Al SI "2

S2m-2@

S~m-2@

S(2m-ll(!)2m-2 2

1 (1) 2m-l
(2m - I)! 2

1 (1)2m-2
(2m - 2)! 2

o

o

o

1 (1)2m-2
(2m - 2)! 2

o -1

(4.12)

Lin is the minor of the leading term E(1/2).

5. THE CARDINAL SPLINE OPERATOR

For each function f(x) bounded on R, we define .fl7"j to be the unique
bounded cardinal spline of degree k satisfying

.fl7kf(v) = f(v) v = 0, ±l, ±2,oo..

It should be noted that one of the main tools used to investigate periodic
splines has been to consider them as cardinal splines. Thus our methods
should enable us to furnish a value for II .fl7k II.

Proceeding as before, we find that

co

II .fl7k II = max L IL(x - v)1
XE[O,I] v=-co .

where L(x) is the unique bounded cardinal spline of degree k interpolating
to the data

It is known that

L(v) = lb: v=O
v = ±1, ±2,00..

1
-(-I)V,

sgn L(x - v) = Yv = (-I)v
xE[O,I] ,

v = 1,2,... ,
v = 0, -1, -2'00' .

(5.1)



312

Hence, letting

we have
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00

S(x) = I yvL(x - v),
v=-oo

II !fJk II = max S(x)
xE[O,lj

(5.2)

The relationship between II !fJk II and [I !fJn
k II is expressed by the following

theorem.

THEOREM 3.

(5.3)

Proof Restricting attention to [0, 1],

00

IS(x) - Sn(x)I ~ I IYv - yvn I IL(x - v)1
v=-oo

~ 2 I IL(x - v)[,
Iv l;;,n/2

and since L(x) -+ 0 exponentially as I x I -+ 00

X E [0, 1],

as n-+ 00 (5.4)

uniformly on [0, I]. Then by (3.8) and (5.2)

II !fJk II = S(1/2). (5.5)

The theorem follows by setting x = 1/2 in (5.4). Note the second equality in
(5.3) holds because of the obvious fact

Let us now proceed with the computation of II !fJ2m-l II. Extend S(x) from
(- 00, 0] to R as in Section 4, i.e., the extension, S(x), is a cardinal spline
satisfying the Euler data (4.3). Then we may write

2m-2

S(x) - E(x) = L CiSi(X).
;=1

(5.6)
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However, both Sex) and E(x) are bounded for x :( O. Therefore only those
eigensplines Slx) which are bounded for x :( 0 may appear in (5.6), and
because of (4.2) we find

and hence

m-l

Sex) - E(x) = L C;S;(x),
;=1

-00 < x < 00,

m-l

Sex) = E(x) + t:l C;S;(x) + (2m ~ 1)! x~m-\ x:(1. (5.7)

Because the data (5.1) is symmetric about x = 1/2, one obtains the
equations

S(V)(1/2) = 0, v = 1, 3,... , 2m - 1 (5.8)

enabling us to solve for the unknowns in (5.7). This leads to the following
expression for II !l'2m-l II.

THEOREM 4.

II !l'2m-l 1\

E G)
E' (~)

E'" (~)

SI (~)

SI' (~)

S;' (~)

Sm-l (~)

S~_1 (~)

S;'-1 (~)

1 (I)2n-l

(2m - I)! 2:
1 (I)2m-2

(2m - 2)! 2:
1 (I)2m-.

(2m - 4)! 2:

S(2m-l) (!)
m-l 2

(5.9)

where L1 is the minor of the leading element E(1/2).

We now give the results for even degree k = 2m. The functions E(x), S;{x)
are as defined before, except now their knots are at the half-integers. We also
note that ~m has dimension 2m, and the corresponding eigenvalues satisfy
'\ < A2 < ... < Am < -1 < Am+! < ... < A2m < O. L1 n and L1 have
meanings as before.
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THEOREM 5. For n odd, n > 1,

o

o

For n even,

£' (~)

S~2m-l) (~)

A1«n-l) 12)SI'(0)

S2m (~)

S~m (~)

S(2m-l) (!)
2m 2

A-«n-l)/2)S' (0)
2m 2m

A-«n-l) 12)S(2m-l)(0)
2m 2m

(5.10)

S2m (~)

S~m (~)

S~~-I) (~) • ..1;:;1. (5.11)

A2';:S~m (~)

A-nS(2m-l) (!)
2m 2m 2

II 2 2m II = . ..1-1. (5.12)
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6. OTHER REMARKS
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(6.2)

To apply the formulas of the preceding sections, it is of course necessary
to compute the Euler spline and all eigensplines. A few words on their
construction seems in order. We assume the degree is odd.

It is not hard to see that the Euler spline on [0, 1] is that polynomial of
degree 2m - 1 satisfying

£(0) = 1,

£(1) = -1, (6.1)

£(v)(O) = £lv)(1) = 0, v = 1,3,... , 2m - 3.

The eigenspline Si(X) is an element of ..'l;m-l , satisfies (4.2), and is of class
C2m- 2• Therefore,

Si(O) = Si(1) = 0,

S~v)(l) = AiS~v)(O), V = 1,2,... , 2m - 2.

Since Si(X) is just a polynomial on [0, 1], (6.2) forms a homogeneous system
of equations from which the eigenvalues and corresponding eigensplines may
be obtained. We illustrate for the cubic case. Writing

X E [0, 1],

we apply (6.2) and find

a1 + a2 = Aa2

a1 + 2a2 + aa = Aaa

a1 + 3a2 + 3aa = O.

This gives the characteristic equation

l
l~ I-A 0 I

~ 1 ~ A = A2 + 4'\ + 1 = 0,

whence,

Al = -2 - v3,

A2 = -2 + v3.

We may now solve for Si(X):

SI(X) = -(3 + v3) x3 + 3x2 + v3 x,

Slx) = (-3 + v3)x3 + 3x2 - v3 x,
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Also,

RICHARDS

E(x) = 4x3 - 6x2 + 1.

Formulas (4.11), (4.12), and (5.9) may now be applied. In particular

II 2 3 11 = (1 + 3 V3)/4 R:i 1.55.

Other computational results of interest are as follows:

1122 11 = V2 R:i 1.41,

II 2 4 11 R:i 1.69,

II 2 5 II R:i 1.82.

We conclude the paper with an approximation theorem. The following
modification of a result of Marsden [5] is used.

LEMMA (Marsden). There exists a linear operator T from C[O, 1] onto the
space of splines of degree k with knots (2.2) having the property

Ilf - Tfll ~ (( k ~ 1(2 + 1) w(f; h), (6.3)

(6.4)

where w(f; .) is the modulus ofcontinuity off(x) and h is the mesh length of the
subdivision (2.2). In addition, if f(O) = f(1), Tf is periodic.

We now assume (2.2) is uniform and call the corresponding operator Tnk.
If f(O) = f(1), then

IIf - 2 n '1ll ~ 11(f - Tnkf) + ft'..k(Tnkf - f)11

~ (1 + II 2 nk II) Ilf - Tnkfll

~ (I + II 2 k II) (( k ~ I (2 + 1) w (I; ~).
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